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A STUDY OF FLOW DEVELOPMENT IN MASS MOVEMENTS OF GRANULAR MATERIALS

by

G.B. Crosta, P.S. Powers, and W.Z. Savage

INTRODUCTION

There is field evidence that zones of vanishing deformation, called here
"dead zones", form near obstacles along the paths of mass movements such as
earthflows, debris flows, mudflows, and landslides. For example, in debris
flows in the Alps, Appennines, and in other areas of the world, the formation
of dead zones has been observed. The armoring of structures by dead zones and
consequent preservation of structures directly in the path of the flow, on low
inclination slopes, or the formation of dead zones of debris behind check dams
occur. In addition, earthflows, debris flows and mud flows commonly show
central zones of rigid or plug flow which are often bounded by lateral levees.

We have conducted a number of experiments to study and observe the
formation of these features and the development of flow in regions where an
obstacle is present using a base friction table. The base friction
experiments simulate the flow of a granular material under conditions of
steady flow either in an unconfined or confined state. Initial analysis of
the experimental data suggests that this technique gives a good representation
of the gravity flow of granular materials in a channel with obstructions of
different types along the path. Further, it seems possible to apply such a
technique to similar problems in soil mechanics involving granular materials
such as deformation below shallow and deep foundations and flow in bins and
“hoppers. In what follows we present some preliminary results on velocity and
deformation rate fields from these experiments and indicate briefly how these
results might be applied to the development of dead zones and attendant
features in naturally occurring mass movements.

The interpretation of these experiments is based on the theory of
plasticity. In particular, we have followed, at least partially, the
methodology suggested by Pariseau (1966). We review these topics in the next
section.

THEORY OF PLASTICITY

Numerous models have been developed to account for the flow of granular
materials. Many of these models originated from studies of the flow behavior
of granular materials in silos, bins, and hoppers of different shapes
(Janssen, 1895; Airey, 1897; Caquot, 1957; Jenike, 1955; Johanson, 1962;
Deutsch and Clyde, 1967; Mandl and Fernandez-Luque, 1970; Reimbert and



Reimbert, 1976; Drescher, 1976; Drescher et al., 1978), or flow of broken rock
in mining operations (0'Callaghan, 1960), sublevel caving (Kvapil, 1965), ore
pass movement (Pariseau, 1966), or with tectonic faulting (Ode, 1960; Crans
and Mandl, 1981) and gravitational sliding of loose or slightly consolidated
sediments (Sokolovski, 1960; Szczepinski, 1972; Bruckl and Scheidegger, 1973;
Savage and Smith, 1986). These referenced authors have found that the theory
of plasticity adequately describes the gravitationally driven flow of cohesive
and frictional materials when the flow is steady and the medium behaves like a
homogeneous and isotropic continuum.

The plasticity of granular materials differs from the plasticity of
metals. These differences occur because the relationships between stress and
strain rate, the flow rules, are more complicated for granular materials.
This complexity can, in.part, be attributed to the mechanical properties of
granular materials and to difficulties encountered in the observation of
experiments. It is well known that increasing the confining pressure causes
an increase in the strength of a granular material. Thus, when dealing with
granular materials it is necessary to replace the Von Mises yield condition,
adopted in perfect plasticity, with a yield condition that explicitly takes
into account the hydrostatic pressure. As noted by Drescher (1976), flow
rules for granular materials can be divided in two main categories:
associated flow (Drucker and Prager, 1952; Hill, 1950; Shield, 1953, 1954;
Jenike and Shield, 1959; Rowe, 1962; Roscoe et al., 1963; Schofield and Wroth,
1968; Roscoe, 1970) or non-associated flow (Geniev, 1958; De Jong, 1959;
Spencer, 1964; Drescher, 1976; Mand]l and Fernandez-Luque, 1970). The first,
associated flow, postulates coaxiality of the tensors of stress and strain
increment. The second, non-associated flow, takes the two tensors to be non-
coaxial. Since one of the aims of our research is to compare experimentally
developed velocity fields with theoretical velocity fields, we will discuss
these aspects of plasticity in greater detail in this section.

The theory of plasticity represents a necessary extension of the theory
of elasticity and is concerned with the analysis of stresses and strains in
materials in the plastic range. The theory seeks to establish relationships
between stress and strain rate which adequately describe the observed
deformation under complex stress states. A fundamental principal of
plasticity theory is that if the stress at a point in an elastic material
exceeds the material strength at that point, then the material will fail and
flow inviscidly. Due to the inviscid nature of the motion, there is no
relation between stress and rate of deformation, the time variable does not
enter into the stress-strain formulation, and thus we can speak of strain
rates in terms of strain increments.

In a flowing material the stresses must satisfy the three equations of
motion, which, in the static or quasi-static case, reduce to the equations of
equilibrium written in cartesian tensor notation as:



do;
a_;-z+Fj=0 (1)

1

where F, represents the body force components per unit volume.

In addition to the six stress components, there are three displacement
(or velocity) components which are also functions of position and time and
which can be related to the stresses through an appropriate stress-strain
(constitutive) relation. Constitutive relations assume different forms for
different kinds of materials. For elastic materials, the constitutive
relationships are given by Hooke's Law,

01J=lsk_k51:,+2p8_u (2)'

Here, A is Lame's constant, p is the shear modulus, and the strains are
given by

.= 1 aul + auj
72 " ax;  9x;

) (3)

where u; are the displacement components and x; are the coordinates in the

reference (undeformed) state.

In the case of plastic flow, the rate of deformation, ¢,;, , is related

to the stress, o,;,, by six rules of flow:

&;5=AH;;(04,) (4).



Here the plastic strain rates are given by,

_1, du; 61.22-
élj—"z— ( 6XJ+ axl) (5)’

A is a non-vanishing scalar function of time and space, x; is the

coordinate in the undeformed state, and H;; 1is a known function of material

properties.

If elastic strains are negligible in comparison to the plastic strain,
equation (5) describes the total strain rate for a perfect rigid plastic
material.

For plastic flow to occur, the yield condition must be satisfied. This
condition means that the material will deform permanently at a point whenever
a certain relationship amongst the stresses at that point is satisfied:

This relationship is usually expressed as a function of the stress invariants,
Y(1,,1,,1I;) =0 . In the present case, the yield condition is taken to be

the Coulomb yield criterion, in terms of major and minor principal stresses,

g, and o, :

(6,+0,) .
1%9)

ind+

—wl—_—%-)— -k:cotan=0 (7)

where ¢ is the angle of internal friction and k the cohesion of the material.
In terms of stress components in arbitrary x,y cartesian coordinates, equation
(7) becomes:

-%ﬁ[ox—oy]2+o§y=sin?%g-[ox+oy+2£ﬂ2 (8)

where H = k cotgd (Sokolovski, 1960). We now have a yield condition that is
function of the hydrostatic pressure. Here, the influence of the hydrostatic
pressure is introduced through the angle of internal friction (¢).



Generally, three-dimensional plastic flow problems are intractable (Ode,
1960), so flow is assumed to occur in plane strain. For a plane strain
problem, deformation is allowed to occur only in two dimensions, for example,
in the x-y plane, while the strains in the third direction are equal to zero.
We have, then, two equilibrium equations and one yield function forming a
statically determinate system of three equations in the three unknown stresses
under appropriate stress boundary conditions. Stresses that satisfy the
Coulomb criterion are given by

o,=6 [1+sin¢cos2a] +H (9a)
0,=0 [1-sin¢cos2a] +H (9b)
0,,=0'sin¢sin2ea (9¢c)
where
0==[0,+0,] +H (10)
2 * 7

« 1is the angle between the x-axis and the most compressive principal stress
in the x-y plane.

Substituting the above equations for stresses into the equilibrium
equations leads to the following partial differential equations:

oa
Ox

+s1n¢51n2a€%;+20$1n¢c052a

oa _

do
1+sindcos2a] — -20sindsin2a—
[ ¢ ]X ¢ 5

= pgsin® (11a)
and

51n¢51n2aji—+ZOS1n¢cos2a

ox

oa
Ox

oa _

+[1- 51n¢c052a] 9 +20sindpsin2a 2%
oy By

= pgcosH (11b).



Here, for gravitational body force, p is the density, g is the gravitational

acceleration, and 0 is the angle between the horizontal and the ground
surface. This result yields two equations for the four derivatives

9o 00 Oa Oa We can add two more equations, the equations of the

total derivatives, yielding a system of four equations in four unknowns. This
system can be solved for o and a and by the method of characteristics

(Abbott, 1966; Savage and Smith, 1986). The stress field then follows from
equations 9.

Physically, it seems unreasonable for the stress and velocity field not
to be connected and, in fact, the method of characteristics leads to a
solution for the velocity field as well as stresses along a set of
intersecting characteristic curves. The characteristic curves are also known
as slip lines and are paths for the propagation of discontinuities inside a
plastically deforming material. These curves represent the integration of a
hyperbolic system that has two real roots for each point and, therefore, two
real characteristic slopes. Discontinuities are thus propagated in two
directions through the space, and a pair of characteristic curves (two
families of isogonal curves) may pass through every point in that space.
Discontinuities are jumps in the particular quantity under discussion, either
stresses or velocities. The amount of this jump is the difference between the
values of the same quantity before and after some particle crosses a certain
zone. Physically, a velocity discontinuity is a thin zone, or a distinct
narrow zone (Drescher et al., 1978), of intense shear through which there is a
rapid change in magnitude and direction of the velocity vector and often of
density. In the case of velocity discontinuities, the law of the conservation
-of mass must be obeyed. This law, in fact, requires that the inflow and the
outflow of mass per unit time across a discontinuity must be equal. In the
case of stress discontinuities, the physical law that must be considered is
that of equilibrium or conservation of linear momentum.

The equilibrium equations are transformed to the canonical forms
(Courant and Friedrichs, 1948; Pariseau, 1966) along the characteristic curves
as:

gy _ m_$y) 9 i s
ds. tan[a+( 13 )] ds, along a 1st characteristic line, (12a)
dy _ (X_%yy dx istic 1i

ds, tan(a (4 2)] ds, along a 2nd characteristic line, (12b)



dgl +20-tan¢%-[<l j"sl -0 along a lst characteristic line,  (12c)
%—20-tan¢§§; +k, 5;2 =0 along a 2nd characteristic line, (12d)

where the independent parameters s,,s, represent arc lengths, respectively,
along the 1st and 2nd characteristic curves. The two coefficients, k,,k, ,

introduced in the system are:

_ [Fysin(a-p) -F cos (a-p)]
- [cosdcos (a+p)]

k, (13a),

_ [Fysin(a+p) -F cos (a+p)]
- [cosdcos (a-p) ]

K, (13b),

where p:[%-%] , and F,, F, represent the body force components:

F,=pg'sind (14a),

F,=pg-cos@ (14b).

The solution of this system, for a gravity flow problem, is complicated by the
introduction of the body forces acting in the material. As an approximation,
we can neglect the body forces in the case that (Pariseau, 1966):

where pg is the specific weight of the material, L is the typical depth,

and k the cohesion. If this holds, one can ignore the contribution of the
body force terms in the analysis of steady flow of granular materials. On the
other hand, if the materials are cohesionless, body force terms must not be
ignored in modeling the experimental flow.



SOLUTION FOR EXTRUSION OF A PERFECTLY PLASTIC MATERIAL

When -f’—]9(£'<1 , as would be the case in the flow of highly cohesive

frictional materials, the gravity terms ( k,,k, ) can be neglected and the

governing system of equations reduces to:

dy _ n_¢
dsl—tan[a+(7i ?5)]
dy _ S x_®
dsz—tan[a (TI ?5)]

do
ds,

do
ds,

+20tand

-20tané

dx along a lst characteristic line, (16a)

ds,

1555 along a 2nd characteristic line, (16b)
2

da _5 along a lst characteristic line, (16c)

ds,

(;: =0 along a 2nd characteristic line (16d).
2

In fact, as Pariseau (1966) shows, gravity flows of such materials can be
treated approximately by integration of the above equations.
materials where ¢ is small, or equal to zero, the governing system of

equations reduces to:

dd;,l =tan[a+-141] j;{l
;;’2 =tan [« % %Sz
e
o, 0

along a 1st characteristic line,

along a 2nd characteristic line,

along a 1st characteristic line,

along a 2nd characteristic line

In addition, for

(17a)

(17b)

(17¢)

(17d).



These are the governing equations for the case of a purely cohesive material,
a Von Mises material which has the yield criterion:

+-lo,0,)2+0%=k" (18)

This criterion can be obtained from the Coulomb yield criterion by making ¢ =
0. Solving this system according to the method of characteristics outlined
above (Abbott, 1966), we obtain the characteristic directions:

dy., _ k4
(?x)t-tan(ai 4) (19).

Thus, we can see that due to the absence of friction, the directions of the
maximum and minimum shear lines, respectively called 1st and 2nd

characteristic lines, in the x-y plane, are obtained with rotations of 1 45°

with respect to the principal directions of stress. These are the
characteristic relationships adopted in metal plasticity (Hill, 1950; Prager
and Hodge, 1951; Thomsen et al., 1966). Hill (1950) demonstrated that the
plastic equations are hyperbolic and that, for this kind of material, the
characteristics of stress and velocity coincide, and therefore only two
distinct characteristic directions can be found at each point, and the
resulting lines are called sliplines.

Integrating along each characteristic, we determine the Riemann
invariants:

oc+2ka= constant along a 1st characteristic line, (20a)
and
o-2ka= constant along a 2nd characteristic line (20b)

For a Von Mises material, only maximum shearing stresses exist along
characteristic lines and the normal stress is equal to the mean stress. Hence,
no extension can take place along slip lines and, thus,

du _
dsl_o (21a)

and



dv _
ds, =0 (21b).

These last equations can be written in terms of « as Geiringer's equations
(Hi11, 1950):

du-vda=0 along a 1st characteristic line (22a)
and
dv-uda=0 along a 2nd characteristic line (22b).

Expressions for the stress components in x and y, which satisfy the yield
condition in terms of ¢ and &« , are

o,=0-k-cos2a (23a),
0,=0+kcos2a ' (23b),
T=kssin2a (23c)

=1.
where o-E[ogoﬂ .

A number of numerical techniques, based on geometrical theorems, have
been used to solve the characteristic equations for stress and velocity
fields. Such theorems and numerical techniques are discussed in detail in
textbooks on plasticity (Hill, 1950; Prager and Hodge, 1951; Sokolovski, 1960;
Thomsen et al., 1966). We give here only a brief summary of the geometrical
theorems.

The two fundamental theorems are called Hencky's theorems. The first
theorem states that the angle between the tangents to one family of slip-
lines, at the intersection with the slip-lines of a second family, is constant
along the length of the slip-lines of the first family. It is clear that if a
segment of a slip-line is straight, then all the corresponding sections of any
other line of the same family are also straight. Then, according to the
Riemann invariants and Geiringer's equations (equations 20 and 21), if one
family of slip-lines is straight, the hydrostatic pressure and the total
velocity are constant along each line of that family. The second theorem

10



states that as we travel along a slip-line, the radii of curvature of the
slip-lines of the other family at the points of intersection change by the
distance traveled. The numerical solution of the system of characteristic
equations is obtained by a step-by-step numerical integration along the slip-
lines, by replacing the derivatives by the tangents or finite differences.
The computation starts from curves along which the boundary conditions are
given and proceeds to points which discretize the space inside the region of
plastic flow limited by the boundary curves--the region of influence. In
order to solve the problem, the nature of the boundary conditions is the most
important factor. Generally, three types of boundary problems can arise. The
first is the Cauchy problem, when all the variables are known on a curve not
coincident with a characteristic. The second is the Gourset or Riemann
problem, in which the variables are known at two points of two different
intersecting characteristic lines. The last is the mixed boundary problem,
where one slip-line is given together with a curve along which « is known
(e.g., the centerline or the walls in an extrusion problem).

EXPERIMENTAL THEORY AND METHODOLOGY

Since this study is concerned with gravity-driven flow of granular
material, the first problem was to choose a way to simulate this kind of flow
in the laboratory. Gravity-driven flow can be simulated in three different
ways: by using an inclined plane, a centrifuge apparatus, or a base friction
table.

For these experiments, material flow is realized by means of a base
friction table. In rock mechanics, this apparatus is commonly used to
simulate gravity-induced deformation of solids, but here, the base friction
table is used to simulate the flow of loose granular materials against
obstructions. These materials are either nearly frictionless or cohesionless,
are either confined or unconfined, and brought as nearly as possible to
steady-state flow conditions in which inertial forces are absent. The
apparatus consists of an electric motor, two rollers, and a rubber belt. The
motor can be connected by means of a rubber belt to five pulleys of different
sizes which permit five different velocities. The largest pulley, which gives
the slowest velocity (0.18in/s = 0.46 cm/s), has been employed in our
experiments.

Before describing the experimental technique, it is useful to review
briefly the theory of the base friction table (Hoek, 1971; Bray and Goodman,
1981). The fundamental idea is that the base friction table simulates the
action of gravity in a two-dimensional physical model by means of the drag
force acting along the base of the physical model. These forces are the
combined result of the belt movement, under the model, and the contrasting
action of a fixed obstacle.

11



Physically, the drag force created by the belt along the base of the
model is resisted by the base friction force, Fb, (see fig. 1) acting in the
horizontal (xy) plane of the model. The increment of the drag, dT, under a
small slice, dx, of material is:

dT=p,y tdxdy (24)

where p, is the coefficient of friction between the model and the moving

belt, y is the unit weight, and t is the thickness of the physical model.
Under gravity, the body force acting on an element is :
dF=y tdxdy (25).

Comparing the last two equations, the analogy between the action of gravity
and drag force, proportionally related by u, , is clear and so the validity

of the experimental technique follows. For a model of uniform width (w), the
base friction force at "depth" x is:

Fp(Xx) =pp (Y t+p) ‘wx (26)

where p is a confining pressure applied on the upper surface of the model
(Egger, 1979).

'DESCRIPTION OF THE EXPERIMENTAL TECHNIQUE

One aim of this experimental research is the generation of data for
comparison with the theoretical solutions to be presented below for the flow
of granular materials in plane strain conditions. Another aim is the study of
the development of morphological features, both in confined and unconfined
conditions. A final aim is to check the validity of the adopted experimental
technique for the study of gravity-driven flow of granular materials. In
particular, the comparison with theoretical solutions involves the collection
of experimental velocity data to reconstruct velocity characteristics and the
principal stress field. Different experimental techniques have been adopted
in studies of gravity flow of bulk materials.

12
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Generally, a variety of particle tracking techniques--phosphorescent
powder (Pariseau, 1966), X-ray with small lead balls (Drescher et al., 1978),
labeled markers inserted in the material (Li Yenge, 1980)--have been used to
follow the movement of material (sand, mixtures of sand with copper or
magnetite, glass spheres, small angular rock fragments, etc.) inside bins or
hoppers of different shapes.

The original base friction apparatus designed for rock mechanics
simulations, at the University of Colorado (Boulder), has been modified to
satisfy our requirements. Two channels of different widths (12 and 24 in. or
30.5 and 61 cm for 41 in. or 104 cm of length) (fig. 2) and a series of
obstacles were prepared to simulate narrowing along the path (with normal or
inclined sides) and obstructions in the middle of the main channel (normal or
inclined). The narrowing of the channel is described below by means of the
ratio between the width upstream and the width downstream of the obstruction
(the extrusion ratio). In the experiments, three values of the extrusion
ratio (E.R. in Tables I and II) were used: 1.5, 2, and 3. The apparatus was
also modified by the addition of a thick (0.5 in. or 1.27 cm) plexiglass plate
to constrain the material from dilatation in the vertical direction (z-axis)
and to simulate plane (confined) flow conditions.

The experiments were carried out with two types of dry granular
material: flour (to simulate a cohesive, frictionless material) and sand (a
frictional-cohesionless material) (see Table I and II). The former was simple
white cooking flour, small enough to pass through the 100 sieve (0.149 mm) but
Targer than a 200 sieve mesh (0.074 mm). The uniformity of the sand is
represented in the grain-size plot (U = uniformity coefficient = 1.75) (see
Table III). Angles of friction were measured, by means of a direct shear
test, for the materials and the contact surface between sand or flour and
plexiglass. The angles of internal friction were 40°-44° for the sand and

10°-14° for the flour. The friction angle for the contact between sand and
plexiglass was 30° and less than 10° for the contact between flour and
plexiglass. The material was placed on the conveyor without any particular
technique and the bulk densities, obtained using the known weight and volume,
were always in a restricted range (see Table IV and V).

The particle tracking technique, for the confined experiments, consisted of
spraying black paint through a peg-board to create small dots and using white
or black spray paint, respectively, on sand and flour to draw regularly spaced
transversal lines. The size of the mesh constituting the grid was different:
1 in. (2.54 cm) and 3/4 in. (1.9 cm), respectively, for a 24 and a 12 in. wide
channel. The paint used in this operation was of the flat type to avoid
increasing the moisture content of the material. In the unconfined
experiments, the grid was generated by indenting the material surface with a
plastic grid (eggshell form). This gave a square mesh of 0.6 in. (1.5 cm)
spacing. In this way, a series of regular straight grooves were created.

14
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Table III.

Grain Size Analysis

Grain-size analysis for the sand.

Sieve Size (mm) | Finer Percent
(@m) Passing
-- 1.70 823.8 100.00
20 0.85 594.1 72.12
40 0.42 64.3 7.81
60 0.25 8.6 1.05
80 0.18 3.2 0.39
100 0.15 1.7 0.21
120 0.125 1.2 0.15
Finer |  =---- 1.2 0.00
Grain Size Analysis Plot
Percent Sand
1m { \ 1
\
50 \
\
N
0
10.0 1.0 0.1 0.01

(Size in mm.)
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Table 1IV.

confined experiments on sand.

Bulk density values computed for unconfined and

MATERIAL

SAND

------- > EXPERIMENT WIDTH = 127
Bulk Density (g/cm3) loose = 1.347]| slightly compacted = 1.492
BULK DENSITY
UNCONFINED CONFINED
E.R. Thickness Initial Final Dead z. Time Initial Final Time
inches g/cm3 g/cm3 g/cm3 sec g/cm3 g/cm3 sec
2 1 1.499 1.711 1.70-1.83 128 1.463 2.230 _
2 2 1.379 1.443 1.90-2.12] 118 1.447 1.566 _
3 1 1.441 1.607 1.53-1.54 128 1.494 1.816 221
3 2 1.438 1.563 1.41-1.43] 108 1.452 1.526
Table V. Bulk density values computed for unconfined and
confined experiments on flour.
MATERIAL  ------- > FLOUR EXPERIMENT WIDTH = 12"
Bulk Density (g/cm3) loose = 0.557| slightly compacted = 0.766
. BULK DENSITY
UNCONFINED CONFINED
E.R. Thickness Initial Final Dead z. Time Initial Final Time
inches g/cm3 g/cm3 g/cm3 sec g/cm3 g/cm3 sec
2 1 0.5685 0.657 |0.68-0.74} 123 0.590 0.990 161
2 1 0.620 0.660 | 0.75-0.79] 129 0.602 0.920 146
2 2 0.595 0.703 |0.74-0.76 | 127 0.613 0.771 _
3 1 0.615 0.703 |0.67-0.68] 125 0.631 0.938 208
3 1 0.640 0.706 0.70 124 _ _ _
3 2 0.614 0.745 0.77 117 0.598 0.760 266
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These grooves persisted for the duration of the experiments and could be made
visible by illuminating the surface at a low angle.

To obtain information on mass balance, weighing was carried out on both
types of experiments. For purposes of weighing, material of the confined
experiments was subdivided into two volumes. Material passing through the
inside of the narrow channel and material remaining behind or upstream of the
obstruction were weighed separately. In the case of the unconfined
experiments, the material was weighed in 5 regions (fig. 3)--in the bulged
dead zones, in the compacted dead zones, in the levees, in the channel, and in
material remaining behind the obstruction. The separation of bulged and
compacted dead zones and of levees and channel material is represented by the
plane of original thickness (t) in figure 3. During weighing, the various
regions were separated by thin (<0.1 in. or <0.254 cm) plexiglass sheets.

Another variable introduced in the experiments was the thickness of the
material to evaluate its influence on the velocity distribution in the
horizontal x-y plane as well as in the vertical x-z plane. Two thickness
values were adopted: 1 and 2 in. (2.54 and 5.08 cm).

To maximize the information from the experiments, all experiments were
filmed with a video camera, which stores images in a digital format. To avoid
strong optical distortion, we used the maximum possible distance between video
camera and material. By means of a graphic board, we were able to capture
images from the video camera to a computer. These images were then digitized
directly on a computer screen by means of a program written for this purpose.
In addition to the video tapes, 35 mm pictures were taken with a reflex camera
during all the experiments.

'DESCRIPTION OF TYPICAL FEATURES IN THE FLOW EXPERIMENTS

Features typical of gravity flow of granular material, as reported in
many experimental studies (Johanson, 1962; Pariseau, 1966; Ladanyi and Hoyaux,
1969; Drescher, 1976; Drescher et al., 1978; Li Yenge, 1980) can be recognized
from careful examination of the results of the experiments. Further, some of
the observed features can be compared to the features described in structural
geology experiments (Hubbert, 1951) and soil mechanics experiments
(Sylwestrowicz, 1953). In the following, we summarize these features
considering separately the confined and unconfined experiments.

Confined experiments
The first feature to appear, a few seconds after initiation of belt
movement, is the boundary between the plastic zone (regions A and B in figs. 4

and 5) and the rigid plug (region C) represented by line d-g in figure 5. The
plastic zone consists of two fans upstream of the step or obstacle in the flow
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symmetry. Also in the figure, we can see shortening of distances between
originally equally spaced points representing compaction and relative movement
of points representing shearing along the lateral discontinuities.

Streamlines inferred from the movement of points are shown in figure 28A
and can be compared with the experimental streamlines obtained by Pariseau
(1966) (fig. 28B). Figure 29 shows the way in which the different alignments
of points in figures 26 and 27 are identified and numbered. The position of
discontinuities and dead zones can also be inferred from the distribution of
displacement increments shown in figure 30. The dashed lines in figure 30
represent the configuration of regularly spaced points at 40 seconds and the
solid lines represent the configuration of the same points at 45 seconds after
the start of the experiment. We notice the absence of motion in the dead
zones (isolated points represented by solid and empty squares in fig. 30) and
the increase in velocity after crossing each velocity discontinuity. This
jump in the velocity is represented by small steps along the lines.

Figure 31 shows the change in spacing of the grid points in the x
direction (parallel to the flow) for various rows of points in the y direction
numbered according to figure 29. The spacing values are nondimensionalized
with respect to the initial value of the grid spacing (0.75 in. or 1.9 cm).
Knowing the displacement and the elapsed time, we can compute and plot the two
dimensionless velocity components (Vx/Vo, Vy/Vo). As a consequence of such
nondimensionalization, the velocity of the rigid part of the material upstream
of the plastic zone is equal to one and in other regions is represented as
multiples of this value. The various curves represented in figures 32 and 33
are the velocity components computed for various alignments of points numbered
according to the convention shown in figure 29. The plots give us an idea of
the increment in the velocity components as material moves toward the
centerline and approaches the channel orifice.

The velocity values can be compared with the values obtained by Pariseau
on the basis of experimental results and theory (Pariseau, 1966). Pariseau
conducted gravity flow experiments on the problem of ore pass movement, using
a mixture of sand and magnetite (angle of internal friction = 34°). His
experiments and ours have similar geometrical constraints. Figure 34 is an
isovel map, of the total velocity vector, prepared from our experimental data
at 45 seconds. Compare this with figure 35 taken from Pariseau. Note that
figure 34 represents the left half and figure 35 the right half of the
experimental velocity field in the outlet region. Also, note that figure 35
and subsequent figures we reproduce from Pariseau (1966) were considerably
idealized by him. Our figures, on the other hand, have not been idealized, as
the reader can gather.
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STREAMLINES

the tlgt Region
ring Drawdown,

(Pariseau, 1966)

0.0 v

P 4]
1,0 (inches) 230 y
‘x (centerline) k(orifice edge)
Figure 28B. Experimental streamlines obtained by Pariseau for an
experiment with similar geometrical constraints (extrusion
ratio = 3).
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Once the velocity has been determined, we can compute the strain rates.
The contour plots of the three coordinate strain rates, computed using
equations 28a, b, and c, are shown in figures 36A, B, and C. Substituting the
computed strain rate values in equation 27, the condition of isotropy, we
obtain the angle a« between the major principal direction and the x-axis. The
principal stress trajectories, which are coincident with the trajectories of
the principal rate of deformation, assuming associated flow, have been
computed for 30 seconds and are shown in figure 37A. The result is similar to
that obtained by Pariseau (reproduced here as fig. 37B).

Now, simply by addition of the angle p=3:({%—{§) , we obtain the

velocity characteristic directions. Velocity characteristics obtained at 30
seconds from the start of the experiment are shown in figures 38A and 39A for
two different assumptions: dilatant material, where ¢ = angle of internal
friction, and incompressible material, where ¢ = 0°. Again, these results can
be compared with the results obtained by Pariseau (1966) (figs. 38B and 39B)
and are similar to the results obtained by other researchers (e.g., Johanson,
1962).

Finally, following the geometrical theorems and the proposed numerical
solutions quoted in the chapter on the extrusion of perfectly plastic
materials, a computer program has been developed to generate characteristic
curves for stresses and velocities, under conditions of maximum and minimum
friction along the sides of the channel and for different values of the
extrusion ratio (the ratio between the widths of the channel upstream and
downstream of the obstruction). Some plots representing the characteristic
field and the distribution, direction, and magnitude of velocity are presented
for the case of an extrusion ratio equal to 3 (figs. 40A, 40B, 41A, 41B). In
the figures, the flow of the material is from the left to the right, parallel
“to the x-axis, and only half of the solution is shown for symmetry reasons.
In figures 40A and 41A, the crosses show the directions for each of the two
sets of characteristic lines (lines representing the directions for the
maximum and minimum shear stress) for discrete points in the numerical mesh.
Unit length in the diagrams is represented by the radius of the circular arc
centered at the origin of the fan (0,0) at the upper edge of the obstacle and
intersecting the centerline at the point of coordinates (-0.707, 0.707). The
total velocity vectors computed for each point in figures 40A and 41A are
shown in figures 40B and 41B. The magnitudes of the total velocity vectors
are expressed in multiples of the velocity in the rigid part of the material,
that is, the material on the left of the fan. These figures can be compared
with experimental data presented for our flour experiments (figs. 12, 13, and
14A) . We notice that the experimental dead zone geometry obtained in these
experiments is similar to the dead zone geometry predicted by the theory in
the case where there is maximum friction along the sides (fig. 41A).
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Figure 36A. X-strain rate component (after 30 sec).
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Figure 36B. Y-strain component (after 30 sec).
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DISCUSSION OF APPLICABILITY OF THE PLASTICITY SOLUTIONS

In modeling the flow, we have assumed homogeneity and isotropy of
material and unbreakability of the grains. Most importantly, we have assumed
that principal strain rate and principal stress axes are coincident during
flow. We have seen that this gives good agreement between experimentally and
theoretically determined principal stress orientations (figs. 37A and B).

Since we have assumed an associated flow rule, we expect that the volume
of the deforming material will increase during confined flow when ¢ > 0
(Savage and Smith, 1986). However, we have seen that the thickness of shear
zones remain constant for the duration of our experiments. In addition, our
velocity field for sand shown in figure 34 is comparable to the velocity field
from Pariseau for a similar material (fig. 35). Also, our experimental
streamline field in figure 28A and Pariseau's experimental streamline field in
figure 28B are comparable. Pariseau (1966) and Pariseau and Pfleider (1969)
found a disagreement between the theoretical velocity and streamline field,
computed using the angle of internal friction of the material, and their
experimental velocity field and streamlines. Repeating the computation using
a value of internal friction of zero, the incompressibility condition, they
found better agreement between the theoretical and experimental velocity and
streamline fields. Since figures 28A (for streamlines), 34 (for velocities
for our sand experiment), 28B (for streamlines), and 35 (for velocities from
Pariseau) are similar, we can infer that our experimental velocity data should
be modeled by taking ¢ = angle of internal friction to be zero. Indeed,
although a detailed comparison has not yet been made between velocities
obtained from the flour experiments and the theoretical extrusion velocities
for a perfectly plastic material, we do see similarities even though the flour
angle of friction average is 12°.

, Experimentally, as in the experiments described above, it has been
observed that all materials, after contraction or dilatation during the
initial phases of deformation, depending on the original density, approach a
critical state during which deformation occurs at constant volume (cv)
(Castro, 1969; Poulos, 1981). For this reason, Houlsby and Wroth (1980)
assume that intensely sheared zones and adjacent rigid zones have different

properties. They take ¢=¢,,,,v+#0 in the rigid zones

and ¢=¢_ <¢,.,,,v=0 in the intensely sheared zones where v is the angle of

dilatation. As mentioned above, Pariseau (1966) arrived at a similar solution
by reconstructing the stress and velocity fields from experimental data and
concluded that the best approximation of such data through the theory is
obtained using a value of ¢ = 0.

62



Another consequence of using an associated flow rule and, hence,
coaxiality of principal directions of strain rate and stress (Pollaczek-
Geiringer, 1930; Shield, 1953, 1954; Davis, 1968; Roscoe, 1970) is that a
velocity discontinuity may only occur on a velocity characteristic. This
means that no extension can occur along a velocity discontinuity. Houlsby and
Wroth (1980) present a classification of kinematic discontinuities and discuss
the inextensibility requirement. They prove that the inextensibility
requirement for a velocity discontinuity, in its direction of development, is
unnecessary. An important example where the strain discontinuity must be
considered inextensional, in order to satisfy the compatibility requirements,
is the case for contact with a rigid zone or a dead zone (region of no
movement and deformation). Previous authors derived this inextensibility
condition, applied at any velocity discontinuity, on the bases of various and
often invalid assumptions. For example, Prager and Hodge (1951) assumed that
the velocity variations along the discontinuity must be negligible as compared
to those across it. In this way, Prager and Hodge (1951) neglect the fact
that the presence of velocity gradients inside discontinuities will cause the
deviation of the velocity discontinuities from the characteristics.

In any ideal plastic analysis, the approach is the same as the approach
used for a limit analysis and, as a consequence, the material is considered to
be everywhere at yield at the same instant. As we have seen from describing
the experiments, this behavior is improbable. It is more probable that only
some portions of the material will reach the failure condition
contemporaneously and, for a certain interval of time, growth of the plastic
region will occur in a quasi-static manner with negligible accelerations up to
a condition of steady state. Furthermore, even if the material behaves Tike a
plastic material, the theory does not insure that all the sliplines will be
activated. What is actually observed during the experiments is the
development of only some velocity discontinuities due to the activation of a
~small number of sliplines. This situation can be compared and perhaps
analyzed by the theory of formation of shear bands for frictional materials
(Rudnicki and Rice, 1975; Molenkamp, 1985). In fact, physically, the real
situation is one in which some rigid parts slide relative to each other
because of the presence of these few velocity discontinuities (De Jong, 1959;
Pariseau, 1966; Drescher, 1976; Drescher et al., 1978).

CONCLUSIONS

We have seen that there are qualitative similarities between the
confined experiments and plane plastic flow of bulk materials. These
similarities are seen in the development of the theoretically predicted
regions A and B (the regions of plastic flow) and the development of region C
(the rigid plug) in channel flow (figs. 4 and 5). Of course, these observed
similarities are limited to velocities, velocity discontinuities, and
deformations, since we did not measure stresses inside the materials.
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Certain aspects of the experimental confined flow are exactly predicted
by the theory. For example, the boundary between regions B and C; the rigid
plug boundary is 45° for flour and 60°-65° for sand. Also, the observed
orientations of the shear zones which form the boundary between the dead zones
and the plastic fan in channel flow are those predicted by the theory. For
the flour, this boundary is curved and becomes tangent upstream with the
channel sides. This behavior is predicted for extrusion flow of a cohesive
plastic material in the case where the walls of the channel are frictional
(figs. 41A and 41B; Thomsen et al., 1966). Another important feature is the
formation of compacted, sheared, and rigid dead zones in the confined
experiments.

Also, for sand and flour, the experimentally determined velocities are
in qualitative agreement with those determined theoretically. For the flour,
the velocities are similar to those determined by the solution for extrusion
of cohesive materials through a narrowing channel. For the sand, the
experimental velocities compare with those computed by Pariseau (1966) using
classical plasticity theory for frictional materials and adopting the
incompressibility condition.

For the unconfined flow, many of the features observed have natural
analogues. Some, such as the zones of vanishing deformation (dead zones),
which form near obstacles, lateral levees, and the movement of central parts
of landslides as rigid regions bounded by shear zones, have been reported in
the landslide literature (Fleming and Johnson, 1989; Crandell and Varnes,
1961). Many of these features have also been observed for glaciers (Nye,
1951, 1957, 1973; Collins, 1970).

We have also observed features in the experiments that presumably have
natural analogues but have yet to be observed in the field. For example, the
“evolution of features such as the main lateral discontinuities (figs. 8A, 8B,
and 8C), the development of faulting within the dead zones (fig. 19), and
rates of levee growth (Tables VI and VII) in natural mass movements should be
measured and compared with the experimental data.

Finally, certain refinements should be considered in future experimental
and theoretical work. For example, load cells should be incorporated for
direct measurement of pressure along the sides of the channel and in the front
of the obstacles. A finer grid should be used for better resolution of
velocities and a mechanical deposition technique should be used to obtain a
more uniform starting density for the material used in the experiments. Also,
methods should be developed to reduce effects of compaction during the
experiments and to accomplish continuous feeding of the material during the
experiments. This last refinement would eliminate the effects of the free
surface at the rear of the model and allow experiments of greater duration to
be conducted. Theoretical refinements should include the development and
application of constitutive equations, which properly describe the
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relationships between stress and strain rate as well as the development of
discrete zones of shear and attendant phenomena within the deforming material.
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